CAD Design Engineer

Shepshed
1 week ago
Create job alert

CAD Design Engineer, £40K - £45K, Leicester, Leicestershire

  • £40,000 to £45,000 salary guide + pension + 25 days holiday

  • Flexible working hours and an earlier finish on a Friday available.

  • Market leader in the design, manufacture and installation of purpose-built equipment

  • Do you have experience of medium sized fabrications and sheet metal structures?

  • AutoCAD 2D & 3D experience

    Are you a CAD Draughtsperson, Project Design Engineer, Mechanical Design Engineer, Design Engineer or CAD Engineer passionate about delivering designs of medium sized fabrications and sheet metal structures?

    Your background as a CAD Design Engineer:

  • Your background could be very varied – but should include a solid understanding of mechanical engineering, along with experience in medium fabrications and sheet metal structures

  • Experience of taking a customer order from a specification to full manufacturing drawings, procurement responsibilities and production support where necessary.

  • You will hold a relevant qualification (HNC/HND/Degree) in mechanical engineering, manufacturing engineering, process engineering or similar engineering discipline.

    CAD Design Engineer responsibilities:

  • Managing the design process from concept to commission, ensuring all aspects meet client specifications.

  • Designing and producing detailed mechanical drawings using AutoCAD (2D & 3D) and occasionally SolidWorks.

  • Liaising directly with production teams and clients to provide updates, resolve issues, and ensure smooth project progress.

  • Ensuring designs are structurally sound

    This job is commutable from Shepshed, Loughborough, Leicester, Ashby de-la Zouch, Kegworth, Castle Donnington, Nottingham, Derby

    To apply please send your CV to Sam Hilton at Euro Projects Recruitment Ltd.

    Visit the Euro Projects Recruitment website to search our latest permanent, contract and interim vacancies.

    “Please note that if you are not contacted within the next ten days then your application, on this occasion, has not been successful. We thank you for taking the time to apply.”

    This job is posted by Euro Projects Recruitment, a recruitment consultancy specialising in engineering and manufacturing appointments from tool room to boardroom. We combine over 100 years of technical knowledge and recruitment expertise to introduce the best candidates to the best companies. We are passionate about your future and persistent in our efforts to secure you the right job

Related Jobs

View all jobs

CAD Design Engineer

Senior Design Engineer – Silver Sintering

Senior Manufacturing Engineer

Manufacturing Engineer – Body in White

Manufacturing Engineer

Manufacturing Engineer – Paint

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Rural-Remote Semiconductor Jobs: Innovation Beyond Urban Borders

A Fresh Outlook for Semiconductor Professionals Mention semiconductor jobs and many people instantly visualise state-of-the-art fabrication plants (fabs), sterile cleanrooms, and corporate campuses in or near big tech cities. While it’s true that silicon chips do require advanced manufacturing sites, the shift towards remote work—amplified by digital collaboration tools, cloud-based design systems, and global talent needs—now enables many roles in the semiconductor sector to exist beyond traditional urban technology corridors. At SemiconductorJobs.co.uk, we’re seeing an uptick in opportunities for professionals seeking “tech jobs by the sea” or “semiconductor remote countryside” positions. Newer tools and processes allow chip designers, EDA (Electronic Design Automation) specialists, and supply chain coordinators, among others, to operate from locations they prefer—be that a scenic rural hamlet or a rugged coastal town. The quest for a balanced, more affordable life is drawing highly skilled chip engineers, application developers, and managers out of city centres and into the UK’s picturesque regions. If you’ve ever pictured finishing a complex circuit design review, then stepping outside to rolling hills or the sound of ocean waves, this article is for you. Read on to discover why rural or coastal living doesn’t mean sacrificing cutting-edge career prospects, how to navigate potential challenges, and how to find (or create) your dream rural-remote semiconductor role.

Quantum-Enhanced AI in Semiconductors—Powering the Next Era of Microelectronics

The semiconductor industry is the backbone of modern technology, underpinning everything from smartphones and cloud servers to automotive electronics and advanced robotics. Over decades, semiconductor manufacturing has followed Moore’s Law, consistently increasing transistor density while reducing cost. Yet as we approach sub-nanometre scales, conventional semiconductor techniques face monumental challenges in design, fabrication, and materials science. Coupled with soaring demand for more powerful and energy-efficient chips, the industry must explore breakthroughs beyond classical approaches. Enter quantum computing—a frontier technology harnessing the strange properties of quantum mechanics to perform certain computations at potentially exponential speed-ups. Paired with Artificial Intelligence (AI), quantum hardware might expedite complex tasks like design-space exploration, lithography simulation, advanced testing, and yield optimisation. If harnessed effectively, quantum-enhanced AI could help transcend the current limits of chip performance and open new architectural paradigms for next-gen electronics. In this article, we will: Examine the current state of the semiconductor industry, including why classical methods are hitting bottlenecks. Introduce quantum computing fundamentals—why qubits differ from bits and how they could boost AI. Explore how quantum-enhanced AI can address semiconductor challenges, from chip design to supply chain optimisation. Highlight real-world pilot projects, potential near-term successes, and the main hurdles (like noisy quantum hardware). Discuss the emerging career paths and skill sets that will be crucial for professionals aiming to stand out in an era of quantum-driven semiconductor innovation. Whether you’re a semiconductor engineer, a data scientist in chip R&D, or simply curious about the intersection of hardware and quantum technologies, read on. Quantum-enhanced AI might reshape every aspect of semiconductor design, fabrication, and testing, propelling electronics into uncharted territory. The semiconductor industry is the backbone of modern technology, underpinning everything from smartphones and cloud servers to automotive electronics and advanced robotics. Over decades, semiconductor manufacturing has followed Moore’s Law, consistently increasing transistor density while reducing cost. Yet as we approach sub-nanometre scales, conventional semiconductor techniques face monumental challenges in design, fabrication, and materials science. Coupled with soaring demand for more powerful and energy-efficient chips, the industry must explore breakthroughs beyond classical approaches. Enter quantum computing—a frontier technology harnessing the strange properties of quantum mechanics to perform certain computations at potentially exponential speed-ups. Paired with Artificial Intelligence (AI), quantum hardware might expedite complex tasks like design-space exploration, lithography simulation, advanced testing, and yield optimisation. If harnessed effectively, quantum-enhanced AI could help transcend the current limits of chip performance and open new architectural paradigms for next-gen electronics. In this article, we will: Examine the current state of the semiconductor industry, including why classical methods are hitting bottlenecks. Introduce quantum computing fundamentals—why qubits differ from bits and how they could boost AI. Explore how quantum-enhanced AI can address semiconductor challenges, from chip design to supply chain optimisation. Highlight real-world pilot projects, potential near-term successes, and the main hurdles (like noisy quantum hardware). Discuss the emerging career paths and skill sets that will be crucial for professionals aiming to stand out in an era of quantum-driven semiconductor innovation. Whether you’re a semiconductor engineer, a data scientist in chip R&D, or simply curious about the intersection of hardware and quantum technologies, read on. Quantum-enhanced AI might reshape every aspect of semiconductor design, fabrication, and testing, propelling electronics into uncharted territory.

Semiconductor Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

From smartphones and electric vehicles to cloud servers and cutting-edge AI, semiconductors are the invisible engines driving our digital world. Demand for advanced chips has skyrocketed, prompting a worldwide race to develop next-generation semiconductor materials, designs, and manufacturing methods. Here in the UK, a potent combination of academic research, venture capital, and innovative start-ups places the country at the forefront of semiconductor technology. In this Q3 2025 Investment Tracker, we spotlight the newly funded UK start-ups blazing a trail in semiconductors. We’ll examine who they are, how much they’ve raised, and—crucially for job seekers—the roles they’re looking to fill. We’ll also show you how to register on SemiconductorJobs.co.uk, a dedicated platform connecting semiconductor professionals with the UK’s fastest-growing chip companies. Whether you’re a silicon design engineer, process technician, or a commercial manager with semiconductor experience, read on to discover fresh opportunities.