Senior Process Engineer

London
1 week ago
Applications closed

Related Jobs

View all jobs

Senior Process Engineer

Senior Process Engineer

Senior Process Engineer

Senior Process Engineer

Senior Process Engineer

Senior Process Engineer

Senior Process Engineer – Anaerobic Digestion
Location: London Office-Based (No Hybrid Working)
Sector: Renewable Energy / Biogas
Type: Permanent | Full-Time

Toro Recruitment is proud to be supporting an innovative and fast-growing player in the UK’s biogas sector. We are currently seeking a Senior Process Engineer to join a pioneering technical team involved in the design, development, and execution of one of the UK’s most ambitious biomethane projects.

The role of a Senior Process Engineer offers a rare opportunity to influence the engineering behind large-scale anaerobic digestion (AD) facilities using agricultural and manure-based feedstocks. The successful Senior Process Engineer will be central to process development, technical assurance, and onsite engineering, with the chance to work on one of the largest AD plants in Europe.

Key Responsibilities:



Lead the creation and review of technical process documents, including mass and energy balances, process flow diagrams (PFDs), and P&IDs.

*

Prepare detailed equipment specifications and liaise with EPC contractors and technology providers throughout design stages.

*

Support and oversee FEED processes, conducting design reviews and ensuring all technical deliverables meet scope and quality expectations.

*

Manage commissioning documentation (FAT/SAT) and support QA across the engineering lifecycle.

*

Represent the business as the Owner’s Engineer on-site, ensuring alignment with design specifications during construction and installation.

Required Skills & Qualifications:

*

Degree-qualified in Chemical, Process, or a related engineering discipline.

*

At least 7 years' experience working on anaerobic digestion or biogas projects using agricultural residues or manures.

*

Proven expertise in process modelling, mass/energy balancing, and chemical engineering principles specific to AD technology.

*

Experienced with process safety standards including HAZOP, COMAH, and DSEAR compliance.

*

Proficiency in MS Excel essential; familiarity with Visio, AutoCAD, and 3D modelling tools is highly desirable.

What This Role Offers:

*

Competitive salary reflective of experience and market value.

*

Performance-based bonus structure.

*

Company pension scheme.

*

Career progression within a fast-developing renewable energy platform.

*

25 days annual leave, plus public holidays.

If you are an experienced process engineer with a passion for sustainable technology and hands-on involvement in cutting-edge biomethane projects, Toro Recruitment would like to hear from you

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Rural-Remote Semiconductor Jobs: Innovation Beyond Urban Borders

A Fresh Outlook for Semiconductor Professionals Mention semiconductor jobs and many people instantly visualise state-of-the-art fabrication plants (fabs), sterile cleanrooms, and corporate campuses in or near big tech cities. While it’s true that silicon chips do require advanced manufacturing sites, the shift towards remote work—amplified by digital collaboration tools, cloud-based design systems, and global talent needs—now enables many roles in the semiconductor sector to exist beyond traditional urban technology corridors. At SemiconductorJobs.co.uk, we’re seeing an uptick in opportunities for professionals seeking “tech jobs by the sea” or “semiconductor remote countryside” positions. Newer tools and processes allow chip designers, EDA (Electronic Design Automation) specialists, and supply chain coordinators, among others, to operate from locations they prefer—be that a scenic rural hamlet or a rugged coastal town. The quest for a balanced, more affordable life is drawing highly skilled chip engineers, application developers, and managers out of city centres and into the UK’s picturesque regions. If you’ve ever pictured finishing a complex circuit design review, then stepping outside to rolling hills or the sound of ocean waves, this article is for you. Read on to discover why rural or coastal living doesn’t mean sacrificing cutting-edge career prospects, how to navigate potential challenges, and how to find (or create) your dream rural-remote semiconductor role.

Quantum-Enhanced AI in Semiconductors—Powering the Next Era of Microelectronics

The semiconductor industry is the backbone of modern technology, underpinning everything from smartphones and cloud servers to automotive electronics and advanced robotics. Over decades, semiconductor manufacturing has followed Moore’s Law, consistently increasing transistor density while reducing cost. Yet as we approach sub-nanometre scales, conventional semiconductor techniques face monumental challenges in design, fabrication, and materials science. Coupled with soaring demand for more powerful and energy-efficient chips, the industry must explore breakthroughs beyond classical approaches. Enter quantum computing—a frontier technology harnessing the strange properties of quantum mechanics to perform certain computations at potentially exponential speed-ups. Paired with Artificial Intelligence (AI), quantum hardware might expedite complex tasks like design-space exploration, lithography simulation, advanced testing, and yield optimisation. If harnessed effectively, quantum-enhanced AI could help transcend the current limits of chip performance and open new architectural paradigms for next-gen electronics. In this article, we will: Examine the current state of the semiconductor industry, including why classical methods are hitting bottlenecks. Introduce quantum computing fundamentals—why qubits differ from bits and how they could boost AI. Explore how quantum-enhanced AI can address semiconductor challenges, from chip design to supply chain optimisation. Highlight real-world pilot projects, potential near-term successes, and the main hurdles (like noisy quantum hardware). Discuss the emerging career paths and skill sets that will be crucial for professionals aiming to stand out in an era of quantum-driven semiconductor innovation. Whether you’re a semiconductor engineer, a data scientist in chip R&D, or simply curious about the intersection of hardware and quantum technologies, read on. Quantum-enhanced AI might reshape every aspect of semiconductor design, fabrication, and testing, propelling electronics into uncharted territory. The semiconductor industry is the backbone of modern technology, underpinning everything from smartphones and cloud servers to automotive electronics and advanced robotics. Over decades, semiconductor manufacturing has followed Moore’s Law, consistently increasing transistor density while reducing cost. Yet as we approach sub-nanometre scales, conventional semiconductor techniques face monumental challenges in design, fabrication, and materials science. Coupled with soaring demand for more powerful and energy-efficient chips, the industry must explore breakthroughs beyond classical approaches. Enter quantum computing—a frontier technology harnessing the strange properties of quantum mechanics to perform certain computations at potentially exponential speed-ups. Paired with Artificial Intelligence (AI), quantum hardware might expedite complex tasks like design-space exploration, lithography simulation, advanced testing, and yield optimisation. If harnessed effectively, quantum-enhanced AI could help transcend the current limits of chip performance and open new architectural paradigms for next-gen electronics. In this article, we will: Examine the current state of the semiconductor industry, including why classical methods are hitting bottlenecks. Introduce quantum computing fundamentals—why qubits differ from bits and how they could boost AI. Explore how quantum-enhanced AI can address semiconductor challenges, from chip design to supply chain optimisation. Highlight real-world pilot projects, potential near-term successes, and the main hurdles (like noisy quantum hardware). Discuss the emerging career paths and skill sets that will be crucial for professionals aiming to stand out in an era of quantum-driven semiconductor innovation. Whether you’re a semiconductor engineer, a data scientist in chip R&D, or simply curious about the intersection of hardware and quantum technologies, read on. Quantum-enhanced AI might reshape every aspect of semiconductor design, fabrication, and testing, propelling electronics into uncharted territory.

Semiconductor Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

From smartphones and electric vehicles to cloud servers and cutting-edge AI, semiconductors are the invisible engines driving our digital world. Demand for advanced chips has skyrocketed, prompting a worldwide race to develop next-generation semiconductor materials, designs, and manufacturing methods. Here in the UK, a potent combination of academic research, venture capital, and innovative start-ups places the country at the forefront of semiconductor technology. In this Q3 2025 Investment Tracker, we spotlight the newly funded UK start-ups blazing a trail in semiconductors. We’ll examine who they are, how much they’ve raised, and—crucially for job seekers—the roles they’re looking to fill. We’ll also show you how to register on SemiconductorJobs.co.uk, a dedicated platform connecting semiconductor professionals with the UK’s fastest-growing chip companies. Whether you’re a silicon design engineer, process technician, or a commercial manager with semiconductor experience, read on to discover fresh opportunities.