Senior Electronics Engineer

Hastings
2 days ago
Create job alert

Senior Electronics Engineer – Hastings (Hybrid Working)
Are you ready to apply your electronics engineering skills to real-world challenges in aerospace and defence? A well-established engineering organisation based in Hastings is looking for a Senior Electronics Engineer to join its team working on the development of innovative avionic systems. This is a hybrid role offering flexibility and the chance to work on cutting-edge technology with a strong mission focus.
About the Company
This organisation plays a vital role in the UK’s defence and aerospace industry, developing innovative electronic solutions that contribute to the safety and effectiveness of critical systems used around the world. With a strong presence in Hastings, it combines the stability of a global player with a forward-thinking, collaborative working culture. The company supports hybrid working and actively invests in the professional development of its engineers.
The Role
As a Senior Electronics Engineer, you will play a key role in the design, development, integration, and compliance of electronic hardware systems within avionic product teams. You will contribute to all phases of the product lifecycle, taking ownership of packages of work while supporting junior engineers and collaborating with wider engineering teams.
Key Responsibilities


  • Lead design and development work on electronic circuits and systems, meeting performance, cost, and reliability targets.

  • Carry out system integration of electronic components into broader avionic platforms.

  • Produce comprehensive technical documentation including schematics, layout drawings, and specifications.

  • Ensure all designs are compliant with relevant industry regulations and standards.

Essential Skills and Experience


  • Strong knowledge of both analogue and digital circuit design.

  • Experience with FPGA or ASIC development and HDL languages (VHDL/Verilog).

  • Proficiency in PCB layout and design, and understanding of EMC and signal integrity.

  • Experience with design simulation tools such as SPICE, Cadence, or Mentor Graphics.

  • Familiarity with power management and mixed-signal design principles.

  • Skilled in the use of test and measurement equipment such as oscilloscopes and spectrum analysers.

Desirable Attributes


  • Self-motivated, professional, and committed to quality delivery.

  • Flexible, innovative and confident in solving technical challenges.

  • Background in aerospace, avionics or naval systems engineering would be beneficial.

Qualifications


  • Degree or equivalent in electronics or a related engineering discipline (or substantial relevant experience).

  • Eligibility to obtain UK Security Clearance (SC) is essential.

Working Arrangements


  • Location: Hastings, East Sussex

  • Hybrid working: On-site and remote mix

  • Occasional travel may be required depending on project needs.

Why Apply?
This is a fantastic opportunity to advance your engineering career in a supportive environment that values innovation, continuous development, and impactful work. You’ll be contributing to technologies that matter while enjoying the flexibility of hybrid working

Related Jobs

View all jobs

Senior Electronics Engineer

Senior Electronics Engineer

Senior Electronics Engineer

Senior / Electronics Engineer

Senior Electronics Engineer

Senior Electronics Design Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Rural-Remote Semiconductor Jobs: Innovation Beyond Urban Borders

A Fresh Outlook for Semiconductor Professionals Mention semiconductor jobs and many people instantly visualise state-of-the-art fabrication plants (fabs), sterile cleanrooms, and corporate campuses in or near big tech cities. While it’s true that silicon chips do require advanced manufacturing sites, the shift towards remote work—amplified by digital collaboration tools, cloud-based design systems, and global talent needs—now enables many roles in the semiconductor sector to exist beyond traditional urban technology corridors. At SemiconductorJobs.co.uk, we’re seeing an uptick in opportunities for professionals seeking “tech jobs by the sea” or “semiconductor remote countryside” positions. Newer tools and processes allow chip designers, EDA (Electronic Design Automation) specialists, and supply chain coordinators, among others, to operate from locations they prefer—be that a scenic rural hamlet or a rugged coastal town. The quest for a balanced, more affordable life is drawing highly skilled chip engineers, application developers, and managers out of city centres and into the UK’s picturesque regions. If you’ve ever pictured finishing a complex circuit design review, then stepping outside to rolling hills or the sound of ocean waves, this article is for you. Read on to discover why rural or coastal living doesn’t mean sacrificing cutting-edge career prospects, how to navigate potential challenges, and how to find (or create) your dream rural-remote semiconductor role.

Quantum-Enhanced AI in Semiconductors—Powering the Next Era of Microelectronics

The semiconductor industry is the backbone of modern technology, underpinning everything from smartphones and cloud servers to automotive electronics and advanced robotics. Over decades, semiconductor manufacturing has followed Moore’s Law, consistently increasing transistor density while reducing cost. Yet as we approach sub-nanometre scales, conventional semiconductor techniques face monumental challenges in design, fabrication, and materials science. Coupled with soaring demand for more powerful and energy-efficient chips, the industry must explore breakthroughs beyond classical approaches. Enter quantum computing—a frontier technology harnessing the strange properties of quantum mechanics to perform certain computations at potentially exponential speed-ups. Paired with Artificial Intelligence (AI), quantum hardware might expedite complex tasks like design-space exploration, lithography simulation, advanced testing, and yield optimisation. If harnessed effectively, quantum-enhanced AI could help transcend the current limits of chip performance and open new architectural paradigms for next-gen electronics. In this article, we will: Examine the current state of the semiconductor industry, including why classical methods are hitting bottlenecks. Introduce quantum computing fundamentals—why qubits differ from bits and how they could boost AI. Explore how quantum-enhanced AI can address semiconductor challenges, from chip design to supply chain optimisation. Highlight real-world pilot projects, potential near-term successes, and the main hurdles (like noisy quantum hardware). Discuss the emerging career paths and skill sets that will be crucial for professionals aiming to stand out in an era of quantum-driven semiconductor innovation. Whether you’re a semiconductor engineer, a data scientist in chip R&D, or simply curious about the intersection of hardware and quantum technologies, read on. Quantum-enhanced AI might reshape every aspect of semiconductor design, fabrication, and testing, propelling electronics into uncharted territory. The semiconductor industry is the backbone of modern technology, underpinning everything from smartphones and cloud servers to automotive electronics and advanced robotics. Over decades, semiconductor manufacturing has followed Moore’s Law, consistently increasing transistor density while reducing cost. Yet as we approach sub-nanometre scales, conventional semiconductor techniques face monumental challenges in design, fabrication, and materials science. Coupled with soaring demand for more powerful and energy-efficient chips, the industry must explore breakthroughs beyond classical approaches. Enter quantum computing—a frontier technology harnessing the strange properties of quantum mechanics to perform certain computations at potentially exponential speed-ups. Paired with Artificial Intelligence (AI), quantum hardware might expedite complex tasks like design-space exploration, lithography simulation, advanced testing, and yield optimisation. If harnessed effectively, quantum-enhanced AI could help transcend the current limits of chip performance and open new architectural paradigms for next-gen electronics. In this article, we will: Examine the current state of the semiconductor industry, including why classical methods are hitting bottlenecks. Introduce quantum computing fundamentals—why qubits differ from bits and how they could boost AI. Explore how quantum-enhanced AI can address semiconductor challenges, from chip design to supply chain optimisation. Highlight real-world pilot projects, potential near-term successes, and the main hurdles (like noisy quantum hardware). Discuss the emerging career paths and skill sets that will be crucial for professionals aiming to stand out in an era of quantum-driven semiconductor innovation. Whether you’re a semiconductor engineer, a data scientist in chip R&D, or simply curious about the intersection of hardware and quantum technologies, read on. Quantum-enhanced AI might reshape every aspect of semiconductor design, fabrication, and testing, propelling electronics into uncharted territory.

Semiconductor Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

From smartphones and electric vehicles to cloud servers and cutting-edge AI, semiconductors are the invisible engines driving our digital world. Demand for advanced chips has skyrocketed, prompting a worldwide race to develop next-generation semiconductor materials, designs, and manufacturing methods. Here in the UK, a potent combination of academic research, venture capital, and innovative start-ups places the country at the forefront of semiconductor technology. In this Q3 2025 Investment Tracker, we spotlight the newly funded UK start-ups blazing a trail in semiconductors. We’ll examine who they are, how much they’ve raised, and—crucially for job seekers—the roles they’re looking to fill. We’ll also show you how to register on SemiconductorJobs.co.uk, a dedicated platform connecting semiconductor professionals with the UK’s fastest-growing chip companies. Whether you’re a silicon design engineer, process technician, or a commercial manager with semiconductor experience, read on to discover fresh opportunities.