Process Engineer (Technical Support)

High Wycombe
1 month ago
Create job alert

Process Engineer (Technical Support)
£45,000 - £55,000 + Car + Hybrid + 33 Days Holiday + Company Benefits
High Wycombe, Buckinghamshire

Are you a Process Engineer or similar looking for a highly autonomous Technical Support role, where you will be responsible for providing guidance and expertise throughout the business, recognised as the leading specialist in your niche field?

Are you looking to join a continuously expanding company with clear goals and growth plans, leading to a long-term career in a role you can truly mould into your own for the future?

In this hybrid role you will be supporting the Projects, Sales, and Service teams within an ever growing company, providing your technical expertise to troubleshoot problems, guide customers, and train other Engineers. You will be writing specifications and data sheets, with some site visits across the South East of England and occasionally overseas.

Founded in the 1960s, this water treatment company provide bespoke designs and services within the industrial, commercial, and manufacturing sectors. They were recently acquired by one of the largest manufacturers in the world giving them a clear plan and growth strategy making this an exciting time to get on board.

This role would suit a Process Engineer who is looking to continuously develop their skills and become a master of a niche field, in a highly varied role where they will be challenged every day.

The Role:

Supporting the Projects, Sales, and Service teams
Providing technical support and guidance, along with troubleshooting and training
Writing specifications and data sheets, including process flow diagrams
Full training provided on specific products/equipment within water treatment
Visiting sites across the South East of England primarily, with occasional travel overseas
Office based, some hybrid working availableThe Person:

Process Engineer or similar
Experience writing technical specifications / data sheets
Reference number: BBBH19240a

Engineer, Engineering, Manufacturing, Production, Water, Treatment, Industrial, Technical, Support, Manager, Management, Process, Controls, Instrumentation, Maidenhead, Watford

If you're interested in this role, click 'apply now' to forward an up-to-date copy of your CV.

We are an equal opportunities employer and welcome applications from all suitable candidates. The salary advertised is a guideline for this position. The offered remuneration will be dependent on the extent of your experience, qualifications, and skill set.

Ernest Gordon Recruitment Limited acts as an employment agency for permanent recruitment and employment business for the supply of temporary workers. By applying for this job, you accept the T&C's, Privacy Policy and Disclaimers which can be found at our website

Related Jobs

View all jobs

Process Engineer

Process Engineer

Process Engineer

Process Engineer

Process Engineer

Process Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Rural-Remote Semiconductor Jobs: Innovation Beyond Urban Borders

A Fresh Outlook for Semiconductor Professionals Mention semiconductor jobs and many people instantly visualise state-of-the-art fabrication plants (fabs), sterile cleanrooms, and corporate campuses in or near big tech cities. While it’s true that silicon chips do require advanced manufacturing sites, the shift towards remote work—amplified by digital collaboration tools, cloud-based design systems, and global talent needs—now enables many roles in the semiconductor sector to exist beyond traditional urban technology corridors. At SemiconductorJobs.co.uk, we’re seeing an uptick in opportunities for professionals seeking “tech jobs by the sea” or “semiconductor remote countryside” positions. Newer tools and processes allow chip designers, EDA (Electronic Design Automation) specialists, and supply chain coordinators, among others, to operate from locations they prefer—be that a scenic rural hamlet or a rugged coastal town. The quest for a balanced, more affordable life is drawing highly skilled chip engineers, application developers, and managers out of city centres and into the UK’s picturesque regions. If you’ve ever pictured finishing a complex circuit design review, then stepping outside to rolling hills or the sound of ocean waves, this article is for you. Read on to discover why rural or coastal living doesn’t mean sacrificing cutting-edge career prospects, how to navigate potential challenges, and how to find (or create) your dream rural-remote semiconductor role.

Quantum-Enhanced AI in Semiconductors—Powering the Next Era of Microelectronics

The semiconductor industry is the backbone of modern technology, underpinning everything from smartphones and cloud servers to automotive electronics and advanced robotics. Over decades, semiconductor manufacturing has followed Moore’s Law, consistently increasing transistor density while reducing cost. Yet as we approach sub-nanometre scales, conventional semiconductor techniques face monumental challenges in design, fabrication, and materials science. Coupled with soaring demand for more powerful and energy-efficient chips, the industry must explore breakthroughs beyond classical approaches. Enter quantum computing—a frontier technology harnessing the strange properties of quantum mechanics to perform certain computations at potentially exponential speed-ups. Paired with Artificial Intelligence (AI), quantum hardware might expedite complex tasks like design-space exploration, lithography simulation, advanced testing, and yield optimisation. If harnessed effectively, quantum-enhanced AI could help transcend the current limits of chip performance and open new architectural paradigms for next-gen electronics. In this article, we will: Examine the current state of the semiconductor industry, including why classical methods are hitting bottlenecks. Introduce quantum computing fundamentals—why qubits differ from bits and how they could boost AI. Explore how quantum-enhanced AI can address semiconductor challenges, from chip design to supply chain optimisation. Highlight real-world pilot projects, potential near-term successes, and the main hurdles (like noisy quantum hardware). Discuss the emerging career paths and skill sets that will be crucial for professionals aiming to stand out in an era of quantum-driven semiconductor innovation. Whether you’re a semiconductor engineer, a data scientist in chip R&D, or simply curious about the intersection of hardware and quantum technologies, read on. Quantum-enhanced AI might reshape every aspect of semiconductor design, fabrication, and testing, propelling electronics into uncharted territory. The semiconductor industry is the backbone of modern technology, underpinning everything from smartphones and cloud servers to automotive electronics and advanced robotics. Over decades, semiconductor manufacturing has followed Moore’s Law, consistently increasing transistor density while reducing cost. Yet as we approach sub-nanometre scales, conventional semiconductor techniques face monumental challenges in design, fabrication, and materials science. Coupled with soaring demand for more powerful and energy-efficient chips, the industry must explore breakthroughs beyond classical approaches. Enter quantum computing—a frontier technology harnessing the strange properties of quantum mechanics to perform certain computations at potentially exponential speed-ups. Paired with Artificial Intelligence (AI), quantum hardware might expedite complex tasks like design-space exploration, lithography simulation, advanced testing, and yield optimisation. If harnessed effectively, quantum-enhanced AI could help transcend the current limits of chip performance and open new architectural paradigms for next-gen electronics. In this article, we will: Examine the current state of the semiconductor industry, including why classical methods are hitting bottlenecks. Introduce quantum computing fundamentals—why qubits differ from bits and how they could boost AI. Explore how quantum-enhanced AI can address semiconductor challenges, from chip design to supply chain optimisation. Highlight real-world pilot projects, potential near-term successes, and the main hurdles (like noisy quantum hardware). Discuss the emerging career paths and skill sets that will be crucial for professionals aiming to stand out in an era of quantum-driven semiconductor innovation. Whether you’re a semiconductor engineer, a data scientist in chip R&D, or simply curious about the intersection of hardware and quantum technologies, read on. Quantum-enhanced AI might reshape every aspect of semiconductor design, fabrication, and testing, propelling electronics into uncharted territory.

Semiconductor Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

From smartphones and electric vehicles to cloud servers and cutting-edge AI, semiconductors are the invisible engines driving our digital world. Demand for advanced chips has skyrocketed, prompting a worldwide race to develop next-generation semiconductor materials, designs, and manufacturing methods. Here in the UK, a potent combination of academic research, venture capital, and innovative start-ups places the country at the forefront of semiconductor technology. In this Q3 2025 Investment Tracker, we spotlight the newly funded UK start-ups blazing a trail in semiconductors. We’ll examine who they are, how much they’ve raised, and—crucially for job seekers—the roles they’re looking to fill. We’ll also show you how to register on SemiconductorJobs.co.uk, a dedicated platform connecting semiconductor professionals with the UK’s fastest-growing chip companies. Whether you’re a silicon design engineer, process technician, or a commercial manager with semiconductor experience, read on to discover fresh opportunities.