Principle Electronics Design Engineer

Oxford
7 months ago
Applications closed

Related Jobs

View all jobs

Radar FPGA Design Engineer

Contract Principal FPGA Design Engineer

FPGA Design Engineer

Process Engineer - Lean Continuous Improvement

Process Engineer - Lean Continuous Improvement

Senior RF IC Design Engineer

Principle Electronics Design Engineer - £55k – High Wycombe – Hybrid

My client are leading providers of technology products to leading industrial companies and research communities. They are looking to expand their Electronics team by adding a Principle Electronics Design Engineer.

Responsibilities:

  • Find technical solutions within electronics development projects, working across a multidisciplinary team

  • Provide expertise in electronics issues for the wider team, mentor colleagues and input to the architectural design process

  • Provide support for existing products and ongoing support for new products

  • Design and execute tests to validate system solutions. Ensure new products are transferred adequately to manufacturing.

    Key Skills

  • Engineering / Scientific Degree in related fields

  • Ideally a further Masters degree

  • Extensive experience in design and development of electronics systems including analogue, digital and power supply circuitry

  • Experience writing embedded software in C and assembler

  • Write efficient VHDL for targeting FPGAs

  • Design and testing for EMC electrical safety reliability

    If you have the required skills for this role, please apply with a copy of your updated CV and we will be in touch

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Semiconductor Careers: Turning Different Thinking into a Superpower

Semiconductors sit quietly at the heart of everything: phones, cars, medical devices, satellites, data centres & everyday appliances. Behind every chip are people designing circuits, running fabs, testing wafers, modelling devices & solving problems most users never see. Those people are not all “textbook” engineers – & that’s a good thing. If you’re neurodivergent (for example living with ADHD, autism or dyslexia), you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a high-precision, high-reliability industry. In reality, many of the traits that made school or traditional offices hard can be huge strengths in semiconductor work: intense focus on detail, pattern-spotting in test data, creative thinking around yield & process issues. This guide is written for semiconductor job seekers in the UK. We’ll cover: What neurodiversity means in a semiconductor context How ADHD, autism & dyslexia strengths map to chip & fab roles Workplace adjustments you can ask for under UK law How to talk about your neurodivergence in applications & interviews By the end, you should have a clearer sense of where you might thrive in the semiconductor industry – & how to turn “different thinking” into a genuine career advantage.

Semiconductor Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the semiconductor jobs market is in that awkward phase of being both overheated and cautious. Global chip demand is booming again, driven by AI, data centres, automotive, defence, 5G and consumer electronics. Fab capacity is set to hit record highs as new plants come online worldwide. At the same time, we are seeing: Waves of investment and hiring in some regions and companies. Restructuring and layoffs in others, as firms rebalance portfolios and chase AI margins. A deepening global skills shortage, with forecasts of major shortfalls in engineers and technicians by 2030. For the UK, the sector is small but strategically vital. The National Semiconductor Strategy, public funding and participation in European chip programmes are all aimed at building domestic capability in design, compound semiconductors and advanced manufacturing. So what does all this mean for semiconductor jobs in 2026 – and for employers trying to recruit in a brutally competitive market?

Semiconductor Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK semiconductor hiring has shifted from credentials & tool lists to capability‑driven evaluation that emphasises shipped silicon, yield/reliability gains, verification coverage, DFM/DFT maturity, robust bring‑up, safe/efficient fab operations and measurable business impact (PPM, YMS wins, time‑to‑yield, test cost, opex). This guide explains what’s changed, what to expect in interviews and how to prepare—especially for RTL/ASIC/SoC, analog/mixed‑signal/RF, verification, physical design, DFT/ATPG, product/test, failure analysis & reliability, process/device, equipment/maintenance, EHS, supply chain & operations roles. Who this is for: Digital design & verification engineers, PD & timing closure, analog/mixed‑signal/RF designers, DFT/ATPG/BIST, STA/PDN/SI/PI specialists, product/test engineers (ATE/DFT), yield/reliability & FA, device/process (FEOL/BEOL), equipment & facilities, EHS/compliance, supply‑chain/outsourcing (OSAT/Foundry), and programme/product managers across the UK semicon ecosystem.