Pipefitter Welder

Fenny Stratford
1 week ago
Create job alert

Pipe Fitter TIG Welder - Process Pipework

2 No. Vacancies

Milton Keynes, MK1 1HP

Hours: Monday - Friday 7.00am - 17.30pm

Duration: 3 Months with the possibility of further work.

The company provides a variety of high-quality mechanical engineering services from process engineering, asset maintenance and repair to feasibility, concept, design, manufacturing and installation. They understand the challenges faced by their clients and provide services that maximise performance and minimise disruption. In addition, their specialist facilities team offer a hybrid service covering maintenance regimes and asset registers, delivering proactive programmes that ensure leaner facilities management. With mechanical installation contracts ranging in value from a few thousand to many millions of pounds for clients including Nestle, Coors, BASF and Britvic, they have experience of completing complex mechanical projects spanning a range of industries including food and beverage, brewing and distilling, pharmaceutical and chemical and industrial. This is an excellent opportunity for a Pipe fitter TIG Welder - Process Pipework, to join the company's on-site operation, supporting a major pipe work installation projects in Milton Keynes, MK1 1HP.

Duties
As a suitably qualified and experienced pipe fitter TIG welder you will be working within a food and beverage production facility in Milton Keynes, MK1 1HP. Responsibilities will include both the removal and replacement of existing damaged, obsolete and corroded process pipework along with the installation of new lines to new production machinery and equipment. Typical duties will include fabricating and butt welding 1" to 4" OD thin wall stainless steel pipework, with schedule 10 stainless steel pipework up to 4" diameter along with carbon steel up to 6". Other duties will include fabricating brackets and associated supports along with assisting other pipe fitter welders as necessary.

About you
Based ideally in the Milton Keynes you will need to live within a commutable distance of MK1 1HP.
Demonstrable experience of TIG welding and fitting thin wall stainless steel process pipework within a food production or petro chemical processing environment is essential for this role.

Previous coding for TIG welding stainless steel pipework is preferred.

What do you think ?
In return for your experience, you will receive a salary circa £28.00 to £30.00 per hour CIS with a range of benefits associated with a market leading organisation.
Please get in touch by sending your current CV or calling David on (phone number removed) to discuss your application in more detail. This is an immediate start.

Carbon60, Lorien & SRG - The Impellam Group STEM Portfolio are acting as an Employment Business in relation to this vacancy

Related Jobs

View all jobs

TIG welder

Pipefitter

Pipe Fitter

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Rural-Remote Semiconductor Jobs: Innovation Beyond Urban Borders

A Fresh Outlook for Semiconductor Professionals Mention semiconductor jobs and many people instantly visualise state-of-the-art fabrication plants (fabs), sterile cleanrooms, and corporate campuses in or near big tech cities. While it’s true that silicon chips do require advanced manufacturing sites, the shift towards remote work—amplified by digital collaboration tools, cloud-based design systems, and global talent needs—now enables many roles in the semiconductor sector to exist beyond traditional urban technology corridors. At SemiconductorJobs.co.uk, we’re seeing an uptick in opportunities for professionals seeking “tech jobs by the sea” or “semiconductor remote countryside” positions. Newer tools and processes allow chip designers, EDA (Electronic Design Automation) specialists, and supply chain coordinators, among others, to operate from locations they prefer—be that a scenic rural hamlet or a rugged coastal town. The quest for a balanced, more affordable life is drawing highly skilled chip engineers, application developers, and managers out of city centres and into the UK’s picturesque regions. If you’ve ever pictured finishing a complex circuit design review, then stepping outside to rolling hills or the sound of ocean waves, this article is for you. Read on to discover why rural or coastal living doesn’t mean sacrificing cutting-edge career prospects, how to navigate potential challenges, and how to find (or create) your dream rural-remote semiconductor role.

Quantum-Enhanced AI in Semiconductors—Powering the Next Era of Microelectronics

The semiconductor industry is the backbone of modern technology, underpinning everything from smartphones and cloud servers to automotive electronics and advanced robotics. Over decades, semiconductor manufacturing has followed Moore’s Law, consistently increasing transistor density while reducing cost. Yet as we approach sub-nanometre scales, conventional semiconductor techniques face monumental challenges in design, fabrication, and materials science. Coupled with soaring demand for more powerful and energy-efficient chips, the industry must explore breakthroughs beyond classical approaches. Enter quantum computing—a frontier technology harnessing the strange properties of quantum mechanics to perform certain computations at potentially exponential speed-ups. Paired with Artificial Intelligence (AI), quantum hardware might expedite complex tasks like design-space exploration, lithography simulation, advanced testing, and yield optimisation. If harnessed effectively, quantum-enhanced AI could help transcend the current limits of chip performance and open new architectural paradigms for next-gen electronics. In this article, we will: Examine the current state of the semiconductor industry, including why classical methods are hitting bottlenecks. Introduce quantum computing fundamentals—why qubits differ from bits and how they could boost AI. Explore how quantum-enhanced AI can address semiconductor challenges, from chip design to supply chain optimisation. Highlight real-world pilot projects, potential near-term successes, and the main hurdles (like noisy quantum hardware). Discuss the emerging career paths and skill sets that will be crucial for professionals aiming to stand out in an era of quantum-driven semiconductor innovation. Whether you’re a semiconductor engineer, a data scientist in chip R&D, or simply curious about the intersection of hardware and quantum technologies, read on. Quantum-enhanced AI might reshape every aspect of semiconductor design, fabrication, and testing, propelling electronics into uncharted territory. The semiconductor industry is the backbone of modern technology, underpinning everything from smartphones and cloud servers to automotive electronics and advanced robotics. Over decades, semiconductor manufacturing has followed Moore’s Law, consistently increasing transistor density while reducing cost. Yet as we approach sub-nanometre scales, conventional semiconductor techniques face monumental challenges in design, fabrication, and materials science. Coupled with soaring demand for more powerful and energy-efficient chips, the industry must explore breakthroughs beyond classical approaches. Enter quantum computing—a frontier technology harnessing the strange properties of quantum mechanics to perform certain computations at potentially exponential speed-ups. Paired with Artificial Intelligence (AI), quantum hardware might expedite complex tasks like design-space exploration, lithography simulation, advanced testing, and yield optimisation. If harnessed effectively, quantum-enhanced AI could help transcend the current limits of chip performance and open new architectural paradigms for next-gen electronics. In this article, we will: Examine the current state of the semiconductor industry, including why classical methods are hitting bottlenecks. Introduce quantum computing fundamentals—why qubits differ from bits and how they could boost AI. Explore how quantum-enhanced AI can address semiconductor challenges, from chip design to supply chain optimisation. Highlight real-world pilot projects, potential near-term successes, and the main hurdles (like noisy quantum hardware). Discuss the emerging career paths and skill sets that will be crucial for professionals aiming to stand out in an era of quantum-driven semiconductor innovation. Whether you’re a semiconductor engineer, a data scientist in chip R&D, or simply curious about the intersection of hardware and quantum technologies, read on. Quantum-enhanced AI might reshape every aspect of semiconductor design, fabrication, and testing, propelling electronics into uncharted territory.

Semiconductor Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

From smartphones and electric vehicles to cloud servers and cutting-edge AI, semiconductors are the invisible engines driving our digital world. Demand for advanced chips has skyrocketed, prompting a worldwide race to develop next-generation semiconductor materials, designs, and manufacturing methods. Here in the UK, a potent combination of academic research, venture capital, and innovative start-ups places the country at the forefront of semiconductor technology. In this Q3 2025 Investment Tracker, we spotlight the newly funded UK start-ups blazing a trail in semiconductors. We’ll examine who they are, how much they’ve raised, and—crucially for job seekers—the roles they’re looking to fill. We’ll also show you how to register on SemiconductorJobs.co.uk, a dedicated platform connecting semiconductor professionals with the UK’s fastest-growing chip companies. Whether you’re a silicon design engineer, process technician, or a commercial manager with semiconductor experience, read on to discover fresh opportunities.