CNC Project Engineer

Tiverton
1 week ago
Create job alert

Job Title: CNC Project Engineer

Location: Tiverton, Devon

Type: Full-time

Department: Engineering

The Opportunity

To join a world-leading manufacturer of linear motion systems and automation components. With a reputation for high-quality, precision-engineered products and strong innovation, we are looking for a motivated CNC Project Engineer to join our dynamic team.

The Role

As a Project Engineer, you will play a critical role in the design and manufacture of Jigs & Fixtures for the businesses processes. The role supports the Process Engineers and the wider business to make improvements to manufacturing processes.

Necessary Skills / Experience / Qualifications

Experience of Programming and Operating CNC Machinery, ideally EDM, Lathe and Milling
CAD Solidworks
Ability to read Technical Drawings
Practical Experience of manufacturing processes
Understanding of LEAN manufacturing techniques
Key Responsibilities

Perform TPMs on machinery and tools
Audit Tools & Order Replacements as necessary
Work with process engineers and manufacturing team to understand problems
Work on draft concepts through to full design
Produce technical CAD drawings of parts
Manufacture parts to drawings, in spec
Install and implement Jigs & Fixtures
About You

The successful applicant will be able to work independently using the above machines.
What We Offer

Competitive salary package, up £40,000
Opportunities for career growth and professional development.
A supportive, innovative working environment.
Closing date is 19.06.2025 

To Apply please follow the application process for the site this job is advertised on. By applying for the above position and providing your personal data to us you understand that your data will be processed in line with our Privacy Policy. To view our full Privacy Policy please visit our website.

Hawk 3 Talent Solutions are committed to the selection, recruitment and development of the best people, basing judgments solely on suitability for the job. By applying for the above position and providing your personal data to us you understand that your data will be processed in line with our Privacy Policy. Whilst we endeavour to respond to all applications individually, due to high volumes, this is not always possible. Thank you for your interest in this role and we look forward to working with you in the future

Related Jobs

View all jobs

Process Engineer

CNC Process Engineer

CNC Manufacturing Engineer

CNC Programmer - Setter / Operator

CNC Turner

Process Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Winning Cover Letter for Semiconductor Jobs: Proven 4-Paragraph Structure

Learn how to craft the perfect cover letter for semiconductor jobs with this proven 4-paragraph structure. Ideal for entry-level candidates, career switchers, and professionals looking to advance in the semiconductor sector. When applying for a semiconductor job, your cover letter plays a crucial role in securing an interview. The semiconductor industry is a fast-evolving sector, and your cover letter provides you with the opportunity to demonstrate your expertise, problem-solving abilities, and passion for cutting-edge technology. Writing a cover letter for semiconductor roles can be challenging, but with the right structure, you can effectively highlight your strengths. Whether you're new to semiconductors, transitioning from another field, or looking to advance your career in this specialised sector, this article will guide you through a proven four-paragraph structure. We’ll provide sample lines and practical tips to help you create a compelling cover letter that stands out in the competitive semiconductor job market.

Rural-Remote Semiconductor Jobs: Innovation Beyond Urban Borders

A Fresh Outlook for Semiconductor Professionals Mention semiconductor jobs and many people instantly visualise state-of-the-art fabrication plants (fabs), sterile cleanrooms, and corporate campuses in or near big tech cities. While it’s true that silicon chips do require advanced manufacturing sites, the shift towards remote work—amplified by digital collaboration tools, cloud-based design systems, and global talent needs—now enables many roles in the semiconductor sector to exist beyond traditional urban technology corridors. At SemiconductorJobs.co.uk, we’re seeing an uptick in opportunities for professionals seeking “tech jobs by the sea” or “semiconductor remote countryside” positions. Newer tools and processes allow chip designers, EDA (Electronic Design Automation) specialists, and supply chain coordinators, among others, to operate from locations they prefer—be that a scenic rural hamlet or a rugged coastal town. The quest for a balanced, more affordable life is drawing highly skilled chip engineers, application developers, and managers out of city centres and into the UK’s picturesque regions. If you’ve ever pictured finishing a complex circuit design review, then stepping outside to rolling hills or the sound of ocean waves, this article is for you. Read on to discover why rural or coastal living doesn’t mean sacrificing cutting-edge career prospects, how to navigate potential challenges, and how to find (or create) your dream rural-remote semiconductor role.

Quantum-Enhanced AI in Semiconductors—Powering the Next Era of Microelectronics

The semiconductor industry is the backbone of modern technology, underpinning everything from smartphones and cloud servers to automotive electronics and advanced robotics. Over decades, semiconductor manufacturing has followed Moore’s Law, consistently increasing transistor density while reducing cost. Yet as we approach sub-nanometre scales, conventional semiconductor techniques face monumental challenges in design, fabrication, and materials science. Coupled with soaring demand for more powerful and energy-efficient chips, the industry must explore breakthroughs beyond classical approaches. Enter quantum computing—a frontier technology harnessing the strange properties of quantum mechanics to perform certain computations at potentially exponential speed-ups. Paired with Artificial Intelligence (AI), quantum hardware might expedite complex tasks like design-space exploration, lithography simulation, advanced testing, and yield optimisation. If harnessed effectively, quantum-enhanced AI could help transcend the current limits of chip performance and open new architectural paradigms for next-gen electronics. In this article, we will: Examine the current state of the semiconductor industry, including why classical methods are hitting bottlenecks. Introduce quantum computing fundamentals—why qubits differ from bits and how they could boost AI. Explore how quantum-enhanced AI can address semiconductor challenges, from chip design to supply chain optimisation. Highlight real-world pilot projects, potential near-term successes, and the main hurdles (like noisy quantum hardware). Discuss the emerging career paths and skill sets that will be crucial for professionals aiming to stand out in an era of quantum-driven semiconductor innovation. Whether you’re a semiconductor engineer, a data scientist in chip R&D, or simply curious about the intersection of hardware and quantum technologies, read on. Quantum-enhanced AI might reshape every aspect of semiconductor design, fabrication, and testing, propelling electronics into uncharted territory. The semiconductor industry is the backbone of modern technology, underpinning everything from smartphones and cloud servers to automotive electronics and advanced robotics. Over decades, semiconductor manufacturing has followed Moore’s Law, consistently increasing transistor density while reducing cost. Yet as we approach sub-nanometre scales, conventional semiconductor techniques face monumental challenges in design, fabrication, and materials science. Coupled with soaring demand for more powerful and energy-efficient chips, the industry must explore breakthroughs beyond classical approaches. Enter quantum computing—a frontier technology harnessing the strange properties of quantum mechanics to perform certain computations at potentially exponential speed-ups. Paired with Artificial Intelligence (AI), quantum hardware might expedite complex tasks like design-space exploration, lithography simulation, advanced testing, and yield optimisation. If harnessed effectively, quantum-enhanced AI could help transcend the current limits of chip performance and open new architectural paradigms for next-gen electronics. In this article, we will: Examine the current state of the semiconductor industry, including why classical methods are hitting bottlenecks. Introduce quantum computing fundamentals—why qubits differ from bits and how they could boost AI. Explore how quantum-enhanced AI can address semiconductor challenges, from chip design to supply chain optimisation. Highlight real-world pilot projects, potential near-term successes, and the main hurdles (like noisy quantum hardware). Discuss the emerging career paths and skill sets that will be crucial for professionals aiming to stand out in an era of quantum-driven semiconductor innovation. Whether you’re a semiconductor engineer, a data scientist in chip R&D, or simply curious about the intersection of hardware and quantum technologies, read on. Quantum-enhanced AI might reshape every aspect of semiconductor design, fabrication, and testing, propelling electronics into uncharted territory.